Complete convex hypersurfaces of a Hilbert space
نویسندگان
چکیده
منابع مشابه
Alexandrov Curvature of Convex Hypersurfaces in Hilbert Space Forms
It is shown that convex hypersurfaces in Hilbert space forms have corresponding lower bounds on Alexandrov curvature. This extends earlier work of Buyalo, Alexander, Kapovitch, and Petrunin for convex hypersurfaces in Riemannian manifolds of finite dimension.
متن کاملCurvature Flow of Complete Convex Hypersurfaces in Hyperbolic Space
We investigate the existence, convergence and uniqueness of modified general curvature flow (MGCF) of convex hypersurfaces in hyperbolic space with a prescribed asymptotic boundary.
متن کاملAffine complete locally convex hypersurfaces
An open problem in affine geometry is whether an affine complete locally uniformly convex hypersurface in Euclidean (n + 1)-space is Euclidean complete for n ≥ 2. In this paper we give the affirmative answer. As an application, it follows that an affine complete, affine maximal surface in R3 must be an elliptic paraboloid.
متن کاملMinkowski Problems for Complete Noncompact Convex Hypersurfaces
LetX be a compact, strictly convex C-hypersurface in the (n+1)-dimensional Euclidean space R. The Gauss map ofX maps the hypersurface one-to-one and onto the unit n-sphere S. One may parametrize X by the inverse of the Gauss map. Consequently, the Gauss curvature can be regarded as a function on S. The classical Minkowski problem asks conversely when a positive function K on S is the Gauss curv...
متن کاملHypersurfaces of a Sasakian space form with recurrent shape operator
Let $(M^{2n},g)$ be a real hypersurface with recurrent shapeoperator and tangent to the structure vector field $xi$ of the Sasakian space form$widetilde{M}(c)$. We show that if the shape operator $A$ of $M$ isrecurrent then it is parallel. Moreover, we show that $M$is locally a product of two constant $phi-$sectional curvaturespaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 1975
ISSN: 0022-040X
DOI: 10.4310/jdg/1214433156